
1Using RT with Linux

Using real-time with Linux

Pierre Ficheux (pierre.ficheux@smile.fr)

September 2021

2Using RT with Linux

Linux and real-time

3Using RT with Linux

Linux and real-time

● Linux a free kernel based on POSIX standard
● Covered by GPLv2 license
● GNU/Linux is a family of OS based on Linux kernel

– Standard distributions (Debian, Ubuntu, Fedora, etc.)

– Produced by a “build system” (Yocto, Buildroot)

● Some “ready to use” RT distributions (RHEL for RT)
● Time-sharing scheduling (SCHED_OTHER)

– All processes run with same priority (0)

– One can change the process “priority” with the nice()
system call (or the nice command) from +19 to -20

● SCHED_FIFO/RR support (with “bad” results)

4Using RT with Linux

Testing RT on Linux

● Procedure:
– Starting a periodic task

– Comparing measured deadline with theoretical one

– Difference is called “jitter”

– Don’t forget to test system with a heavy load !

● Tools:
– Periodic task → cyclictest, latency (Xenomai)

– GPIO

– System load → “flood ping”, hackbench, stress,
dohell

– Measures and results → Oscilloscope, Gnuplot

5Using RT with Linux

Linux (UNIX) principles

● Initially based on processes (not threads)
● First threads implementation available in 2.6 kernel
● Execution modes of a process

– User space

– Kernel space (IO, system calls)

● Complex memory management
– Hardware addresses (check with lspci command)

– Kernel addresses (MMU), is the area above
CONFIG_PAGE_OFFSET

– Virtual address (user space)

● Lots of RTOS (such as RTEMS) don’t use MMU
– Faster management

– No memory protection (user / kernel)

6Using RT with Linux

Scheduling issues on Linux

● No “full” preemption in kernel mode
● Process can’t be interrupted in the interrupt handler (top-half)
● Preemption by scheduler:

– Fixed period with HZ constant (CONFIG_HZ_xx) → 100, 250,
1000 Hz

– Recent kernel uses “tickless” mode (NO_HZ_IDLE), i.e. “on
demand interrupt” but waking up is not deterministic

● RT tasks limitation by “Real Time Scheduler Throttling” in
/proc/sys/kernel

sched_rt_period_us = value for 100% CPU bandwidth (1 s)

sched_rt_runtime_us = RT tasks bandwidth (95 %)

7Using RT with Linux

Linux 2.4 for x86 (2002)

230 ms !

8Using RT with Linux

BB Black (Cortex-A8), 1 ms period

9Using RT with Linux

Pi B+, 1 ms period (signal based)

10Using RT with Linux

Same with clock_nanosleep()

11Using RT with Linux

Improving RT kernel performances

● Standard preemption options (mainline but obsolete)
● PREEMPT_RT (Linux foundation, finally integrated in

version 5.15)
● Co-kernel approach (RTLinux, RTAI, Xenomai)
● Use SCHED_FIFO/RR policy
● Use mlockall() system call to lock memory !
● Use CPU affinity
● Don’t use Linux signal handling (not deterministic) !

12Using RT with Linux

real-time patches
● “preempt-kernel” by Robert Love / MontaVista
● “low-latency” by Andrew Morton
● Patches integrated to mainline since 2.6
● Available for “all” architectures but mostly used on x86
● Preemptive kernel excepting:

– SMP critical sections

– Interrupt context (ISR)

● Menu General Setup / Preemption Model
– PREEMPT original preemption model for desktop

(based on preempt-kernel patch)

– PREEMPT_VOLUNTARY “explicit” preemption points
(middle point and default value)

● Same programming API (user / kernel)
● Not usable anymore (use PREEMPT_RT !)

13Using RT with Linux

Linux kernel configuration

14Using RT with Linux

Preempt-kernel x86 (2002)

15Using RT with Linux

Low-latency x86 (2002)

16Using RT with Linux

PREEMPT_RT

17Using RT with Linux

Real-time patches history

● During autumn 2004 MontaVista, Timesys, Lynuxworks post
real-time related patch fragments

● Ingo Molnar (major kernel maintainer) re-implements parts
from scratch and posts the real-time preemption patch

● A core team forms
● Kernel Summit 2006 accepts a plan to merge all components

into mainline over time

18Using RT with Linux

PREEMPT_RT

● Experimental branch for 2.6 kernel
● Started by Ingo Molnar
● First patch for 2.6.9 (2004)
● Maintained by Thomas Gleixner (Linutronix)
● Official Linux foundation project since 2015
● Works on platforms defining ARCH_SUPPORTS_RT
● Published as a patch for mainline kernel or specific

branch (BSP)
● Finally merged in 5.15, 31/8/2021 !
● Same programming API as standard kernel

19Using RT with Linux

PREEMPT_RT features

● High resolution timers support (hrtimer) + dynamic ticks
● Sleeping spinlocks (preemptible protected regions) based on

rt_mutex
● Adds priority inheritance to spin_lock() and mutex_lock()
● “Threaded interrupt model”→ interrupt handling is based on

kernel thread (with priority !)
69 root 0 SW [irq/62-dwc_otg]

71 root 0 SW [irq/62-dwc_otg_]

72 root 0 SW [irq/62-dwc_otg_]

● Still a full featured Linux kernel (Perf, Valgrind, Ftrace, etc.)

20Using RT with Linux

Spinlocks family

● Spinlocks (Linux/UP)
– IRQ disables on lock, nothing else can interrupt

– Not RT friendly

● Spinlocks (Linux/SMP)
– Spinning (busy wait)

– Not RT friendly

● Sleeping spinlocks (PREEMPT_RT)
– Sections protected by spinlock may be preempted :-)

– “Contended” spinlock may sleep (bad for IRQ, use kthread)

● Raw spinlocks (PREEMPT_RT)
– Disables preemption while held

– Does NOT sleep

– Should be a “lightweight operation”

21Using RT with Linux

PREEMPT_RT configuration (4.x)

22Using RT with Linux

Raspberry Pi + PREEMPT_RT

23Using RT with Linux

Testing PREEMPT_RT performances

● PREEMPT_RT based system is easy to build with
Buildroot or Yocto

● Use “rt-tests” package
● Use cyclictest to create 5 threads (period = 1 ms)

cyclictest -p 99 -t 5 -n

● Use hackbench to stress the system
hackbench -p -g 20 -l 1000

● Test on Raspberry Pi 3
– jitter with standard kernel = 3 ms

– jitter with PREEMPT_RT = 100 µs

PW 1 & 2

24Using RT with Linux

Using a co-kernel (RTLinux & sons)

25Using RT with Linux

Linux + co-kernel

● A very different approach !
● Add a dedicated RT kernel to the Linux kernel

– RT sub-system based on kernel modules

– IRQ virtualization

● Several models
– Kernel only (RTLinux)

– Kernel and (partial) user space (RTAI)

– Kernel and (full) user space (Xenomai)

● User space support is very important regarding
licensing (GPL vs LGPL) !

26Using RT with Linux

Co-kernel principles

● RT specific scheduler
● Interrupt handling virtualization by a “micro kernel”

– Kernel should not mask interrupt (CLI/STI on x86)

– RT interrupts have higher priority

● Linux is an “idle task” for RT kernel (i.e. any Linux task
has lower priority than any RT task)

27Using RT with Linux

RTLinux

● NMT (New Mexico Institute of Technology) free project
created par Victor Yodaiken et Michael Barabanov in
1998

● Licensed under GPL v2 (kernel space)
● Commercial version by FSMLabs
● Patented virtualization technology (5995745)
● Conflict with FSF regarding licensing, agreement with

“open patented license”
● RTLinux sold to Wind River in 2007
● Last GPL version (obsolete) retired by Wind River
● Lots of RTLinux users switched to RTAI or Xenomai !

28Using RT with Linux

RTLinux architecture

Should be GPL !

29Using RT with Linux

RTLinux/GPL x86 (2002)

30Using RT with Linux

RTAI

● Real Time Application Interface
● RTLinux “fork” created by Paolo Mantegazza from

DIAPM (Politecnico Milano)
● Designed for teaching and research (no patent issue)
● Focused on x86
● Introduced LXRT for RT task user space execution
● Collaboration with Xenomai between 2003 and 2005

(RTAI/fusion in 2004)
● Current version is 5.2 (may 2019)

31Using RT with Linux

Xenomai

● Designed by Philippe Gerum in 2001 for RTOS emulation
● Close to RTLinux and RTAI (Linux + co-kernel)
● RTAI collaboration to “avoid” problems with RTLinux patent
● Based on micro-kernel (ADEOS) and interrupt pipeline (I-pipe)
● New architecture since 3.x with 2 choices:

– co-kernel (Cobalt), most used

– single kernel (Mercury) → PREEMPT_RT

● Current stable version is 3.1, legacy version is 2.6.5

32Using RT with Linux

Xenomai 3 (Cobalt)

POSIX, etc.

HW dependent !

33Using RT with Linux

Xenomai 3 (Mercury)

PREEMPT_RT

34Using RT with Linux

Xenomai :-)

● Most efficient RT extension for Linux kernel (30 % to 300 %
better than PREEMPT_RT)

● RT tasks run in user space (no licensing problem → LGPL) !
● Provides “skins” for RTOS API (POSIX, VxWorks, VRTX, etc.)
● Used (and maintained) by big companies such as SIEMENS

35Using RT with Linux

Xenomai :-(

● Very small community
● Lacks of documentation and examples
● Lacks of internal documentation → difficult to adapt to a new

architecture (I-pipe)
● Cobalt is more difficult to set up because of:

– User / kernel installation

– RTDM (specific drivers)

● Some standard debug tools should be adapted
● Not “mainline” (no support from Linux foundation)

36Using RT with Linux

BB Black Xenomai (2013)

37Using RT with Linux

Installing Xenomai

● Slightly more complex than PREEMPT_RT, as you need:
– Kernel sources

– Xenomai sources

– I-pipe sources (patch)

● Create a Xenomai compatible kernel
$ cd <xenomai-src-path>

$./scripts/prepare-kernel.sh --linux=<kernel-path> --arch=<arch> --
ipipe=<ipipe-path>

● Compile user space libraries, tools, etc. (Autotools)
$ configure --host=<cross-toolchain-name> --enable-smp

$ make

● No “Xenomai ready” distribution
● Buildroot support (mainline)
● Yocto support with “meta-xenomai”

38Using RT with Linux

Kernel configuration

39Using RT with Linux

Testing Xenomai performances

● Testing is very close to PREEMPT_RT procedure
– Periodic task

– System stress (Linux domain)

● Xenomai provides latency and cyclictest
● Start latency (default period is 1 ms)

latency &

● Use dohell to stress the system (10 mn)
dohell 600

● Maximum jitter for Raspberry Pi 3 is about 40 µs
● Maximum jitter for x86 is about 5/10 µs

PW 3

40Using RT with Linux

Domains and I-pipe
● Guest OS (Linux, Xenomai) are prioritized “domains”
● Xenomai is high priority domain
● Linux (aka “root”) is lowest priority domain
● For each event (interrupts, exceptions, syscalls, etc.), the

domains may handle the event or pass it down the pipeline
● Calls to generic IRQ handlers should be replaced with calls to

I-pipe functions (such as “ipipe_handle_domain_irq”)

Xenomai domain

IRQ

41Using RT with Linux

Interrupt dispatching and protection

● Pipeline occupied by any given domain can be “stalled”
● Next incoming IRQ will NOT be delivered to the domain's

handler (and domain with lower priority)
● Pending IRQ accumulate in the domain's interrupt log (i-log)
● Domains with higher priority (Xenomai) will still receive IRQ

42Using RT with Linux

Bibliography

● Virtual Memory and Linux https://events.static.linuxfound.org/sites/events/files/slides/elc_2016_mem.pdf

● https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/power_management_guide/tickless-kernel

● https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/real_time_throttling

● Linux scheduler latency https://www.eetimes.com/linux-scheduler-latency (old)

● Using realtime Linux https://elinux.org/images/8/8e/Using_Real-Time_Linux.KlaasVanGend.ELC2008.pdf

● The real-time preemption patch ftp://ftp.polsl.pl/pub/linux/kernel/people/tglx/preempt-rt/rtlws2006.pdf

● PREEMPT_RT / KR 2019 https://embedded-recipes.org/2019/talks/rt-is-about-to-make-it-to-mainline-now-what

● PREEMPT_RT mainlining in 5.x https://lwn.net/ml/linux-kernel/20190715150402.798499167@linutronix.de

● The magic behind PREEMPT_RT https://www.automateshow.com/filesDownload.cfm?dl=Haris-MagicBehindPREEMPTRT.pdf

● Open Patent License (RTLinux) https://www.gnu.org/press/2001-09-18-RTLinux.txt

● Xenomai 3 by Philippe Gerum (french) https://connect.ed-diamond.com/Open-Silicium/OS-016/Xenomai-3-hybride-et-cameleon

● Practical real-time Linux https://elinux.org/images/d/d7/Practical-Real-Time-Linux-ELCE15.pdf

● Porting Xenomai to a new ARM SoC https://source.denx.de/Xenomai/xenomai/-/wikis/Porting_Xenomai_To_A_New_Arm_SOC

● 3D printing with Linux & Xenomai https://elciotna18.sched.com/speaker/kendall_auel.1xog4usl

● Power PMAC (running Xenomai) http://www.deltatau.com/DT_PowerPMAC/PowerPMACHome.aspx

● RTAI/fusion https://lwn.net/Articles/106016

● Fast Interrupt Priority Management in OS Kernel (Stodolsky protection scheme)
https://www.usenix.org/legacy/publications/library/proceedings/micro93/full_papers/stodolsky.txt

● Realtime preemption locking core merged https://lwn.net/Articles/867919

https://events.static.linuxfound.org/sites/events/files/slides/elc_2016_mem.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/real_time_throttling
https://www.eetimes.com/linux-scheduler-latency
https://elinux.org/images/8/8e/Using_Real-Time_Linux.KlaasVanGend.ELC2008.pdf
ftp://ftp.polsl.pl/pub/linux/kernel/people/tglx/preempt-rt/rtlws2006.pdf
https://embedded-recipes.org/2019/talks/rt-is-about-to-make-it-to-mainline-now-what
https://lwn.net/ml/linux-kernel/20190715150402.798499167@linutronix.de
https://www.automateshow.com/filesDownload.cfm?dl=Haris-MagicBehindPREEMPTRT.pdf
https://www.gnu.org/press/2001-09-18-RTLinux.txt
https://connect.ed-diamond.com/Open-Silicium/OS-016/Xenomai-3-hybride-et-cameleon
https://elinux.org/images/d/d7/Practical-Real-Time-Linux-ELCE15.pdf
https://source.denx.de/Xenomai/xenomai/-/wikis/Porting_Xenomai_To_A_New_Arm_SOC
https://elciotna18.sched.com/speaker/kendall_auel.1xog4usl
http://www.deltatau.com/DT_PowerPMAC/PowerPMACHome.aspx
https://lwn.net/Articles/106016
https://www.usenix.org/legacy/publications/library/proceedings/micro93/full_papers/stodolsky.txt
https://lwn.net/Articles/867919

	Partie 5
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

