

TSN for critical embedded systems

TSN for critical embedded systems

ETR 2021 Poitiers/Futuroscope Sept. 2021

EDEN Team

Philippe Cuenot - IRT Saint Exupéry (Segunded from Continental Automotive)

© IRT Saint Exupéry • All rights reserved • Proprietary document

Agenda

Context of the study

□ Pre-analysis of TSN Services

□ Case studies

□ Tool Framework

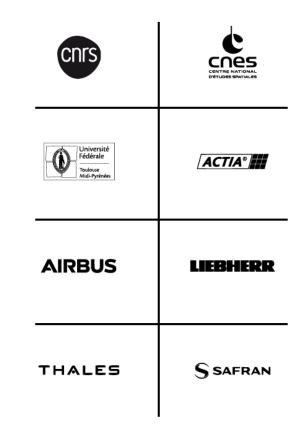
Perspectives

CONTEXT OF THE STUDY

EDEN Team

© IRT Saint Exupéry • All rights reserved • Proprietary document

IRT Saint Exupéry Identity



The IRT is a collaborative and integrated technological research center bridging the public research to the industrial one.

Technologies that are developed answer to industrial needs, benefiting of the academic researches.

IRT Saint Exupéry is a private research foundation supported by the French State funding projects in proportion to industrial contribution and defining the regulatory framework of the foundation.

IRT SaintExupéry: Toulouse Site • B612 Building.

« an ecosystem of collective intelligence »

The B612 building is the totem in terms of developing and accelerating innovation. It is also the amplifier of national and international influence of the Toulouse metropolis.

COCKPI

B612 Acceleration

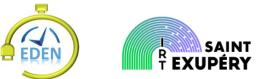
In order to support companies and innovative projects in the aeronautics, space and embedded systems sectors, the B612 proposes an acceleration offer at the heart of the ecosystem, supported by Toulouse Métropole and Aerospace Valley

> **24 000 m²** of total surface **10 900 m²** for IRT Saint Exupéry **8**

companies

298

people @IRT Saint Exupéry


р

a g e

7

INSTITUTES OF TECHNOLOGY

IRT Saint Exupéry: mission

Promote French technological research for the benefit of the industry established on the national territory.

Develop the local ecosystem for aeronautical & spatial sector and critical systems.

Create a link between the public and private research in order to :

- Bridge the two worlds and ease the transfer and implementation of the research within the industry.
- Resourcing thanks to the fundamental research for the benefit of the technological research.

Realize research projects from the industrial needs, integrated, with an upstream contribution from the academic community, supported and funded par the French state and the industrial members.

p a g e

8

IRT Saint Exupéry: Markets and Organisation

12 competences

@IRT Saint Exupéry

High voltage energy >

High density energy >

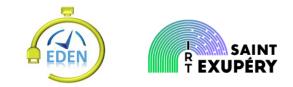
Surfaces / assemblies >

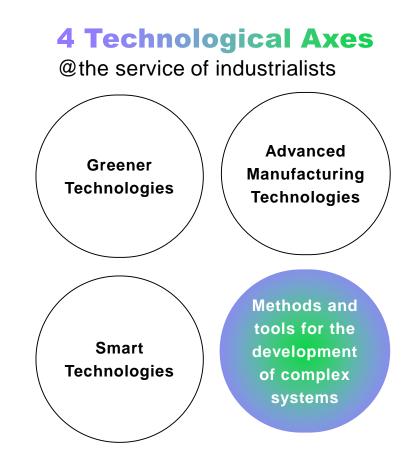
Composite materials >

Advanced Learning >

Al for critical systems >

Systems Engineering >


Multi Discipline Optimization >


Critical Embedded Systems >

High Reliability Energy >

Metallic materials and processes >

Autonomous Connectivity & Detection >

Design efficient & secure hardware and software architectures

> Space

Defence

« Synergy » Markets

Railway

Land Mobility

S Energy

Medecine

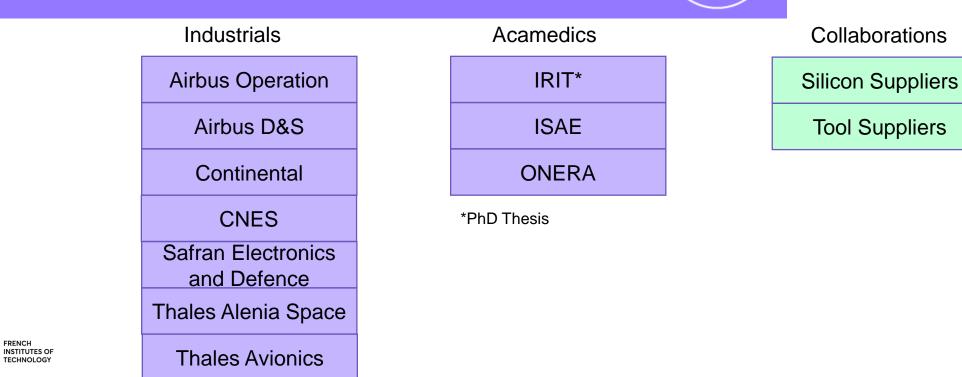
Environment / meteo

28/09/2021

Maritime

EDEN Project

Evaluation of a Deterministic Ethernet Network


36 months 1

10 Members

Objectives: Get full confidence and enable deployment of Ethernet Time Sensitive Network (TSN) as embedded network for multi domains architectures (aeronautic, spatial and automotive)

28/09/2021

EDEN Project

Challenges for embedded critical systems

New requirement for increased network performance Reduce cost by using COTS for embedded network Unification of network support using Ethernet

Aeronautical sector :

Define an alternative to AFDX with a low footprint and low cost solution.

More efficient with the same quality of service.

Space sector :

Unify network for platform communications and payloads with increased performances at low footprint. COTS as IP in space FPGAs (Switch and Endpoint) at low cost.

Challenges for the automotive sector :

New communication needs beyond low costs and footprint required by autonomous vehicle.

Enable off-the-shelf systems in standard Ethernet on the same critical and certifiable network.

PRE-SELECTED TSN SERVICES

EDEN Team

© IRT Saint Exupéry • All rights reserved • Proprietary document

IEEE Standard Analyzed

Quality of Services

IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

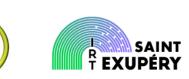
Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

french INSTITUTES OF TECHNOLOGY

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification


Resource

Reliability

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

Standard not selected as not suitable for critical system

No dynamic discovery and attachement required

Quality of Services IEEE802.1Q-2005: Bridges and VLAN Network **IEEE802.1AB-2016: Station and Media Access Control Discovery** IEEE802.1AX-2014/2020: Link Aggregation (LLDP) **P802.1Qcj: Automatic Attachment to provider Backbone Bridge**

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

fi

RENCH INSTITUTES OF TECHNOLOGY

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

Resource

Reliability

Congestion monitoring with data center supervision

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM **P802.1Qcz: Congestion isolation** P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol **P802.1ABcu: YANG Data Model for LLDP** P802.1CBcv: YANG Data Model for FRER

Standard not mature

FRER extension under development

IEEE802.1Qca-2015: Path Control and Reservation Mechanism

IEEE802.1QCB-2017: Frame Replication and Elimination (FRER)

IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF)

P802.1QCBdb: FRER Extended Stream Identification

IEEE802.1ag-2007: Connectivity Fault Management

Quality of Services IEEE802.1Q-2005: Bridges and VLAN Network

IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Under development no additional services

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) **P802.1DC: Quality of Service Provision (for end-systems)**

FRENCH INSTITUTES OF TECHNOLOGY

28/09/2021

Resource reservation under development

Resource

Reliability

Resource

Reliability

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qcd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

Standard left out (not priority)

Implementation specific – redundancy with FRER

Quality of Services IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & **Express Traffic** IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

INSTITUTES OF TECHNOLOGY

Benefit on safety tbc - discarded from now

Reliability

IEEE802.1ag-2007: Connectivity Fault Management

IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

Resource

Reliability

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

Standard outdated

Quality of Services

IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

AVB updated by CBS

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

fit

FRENCH INSTITUTES OF TECHNOLOGY

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

Resource

Reliability

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

p a g e

8

Standard considered for toolset development

Quality of Services

IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

FRENCH INSTITUTES OF TECHNOLOGY

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

N Resource

Reliability

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification **IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP** P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qcd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

p a g e

9

Standard considered for network configuration

Quality of Services

IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

28/09/2021

RENCH INSTITUTES OF TECHNOLOGY

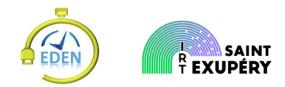
© IRT Saint Exupéry • All rights reserved • Proprietary document

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

N Resource

Reliability


Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

p a g e 2

0

Standard for TSN configuration (scope of study)

Quality of Services

IEEE802.1Q-2005: Bridges and VLAN Network IEEE802.1AB-2016: Station and Media Access Control Discovery IEEE802.1AX-2014/2020: Link Aggregation (LLDP) P802.1Qcj: Automatic Attachment to provider Backbone Bridge

Synchronization IEEE802.1AS-2011/220: Timing and Synchronization

Qos and Synchronization TSN

Latency

Latency

IEEE802.1BA-2011: Audio Video Bridging (AVB) IEEE802.1Qav-2009: Credit Based Shaper (CBS) IEEE802.1Qbu-2016 & IEEE802.3Qbr: Frame Preemption & Express Traffic IEEE802.1Qbv-2015: Scheduled Traffic (TAS) IEEE802.1Qch-2017: Cyclic Queuing and Forwarding (QCH) P802.1Qcr: Asynchronous Traffic Shaping (ATS) P802.1DC: Quality of Service Provision (for end-systems)

FRENCH INSTITUTES OF TECHNOLOGY

Reliability

IEEE802.1ag-2007: Connectivity Fault Management IEEE802.1Qca-2015: Path Control and Reservation Mechanism IEEE802.1Qci-2017: Per-Stream Filtering and Policing (PSPF) IEEE802.1QCB-2017: Frame Replication and Elimination (FRER) P802.1QCBdb: FRER Extended Stream Identification

Resource

Reliability

Resource

IEEE802.1Qat-2010: Stream Reservation Protocol (SRP) IEEE802.1Qcc-2018: User Network Interface specification IEEE802.1Qcp-2018: YANG Data Model P802.1Qcw : YANG Data model for TAS, Preemption, PSFP P802.1Qcx: YANG Data model for CFM P802.1Qcz: Congestion isolation P802.1Qdd: Resource allocation protocol P802.1Qcs: Link Local registration protocol P802.1ABcu: YANG Data Model for LLDP P802.1CBcv: YANG Data Model for FRER

TSN Prospective guideline

Standard		Use case	
802.1AS		Clock synchronisation mandatory	
802.1Qav (CBS)		Transport of multimedia flows but with shared support for control command	
802.1Qbu (Preemption)		For use case of large size ratio between large and small frames when small frames get high priority and low latencies and jitter.	
802.1Qbc (TAS)		For high priority and low latency and jitter control frames	
802.1Qch (CQF)		For small to medium sized systems but is to be demonstrated	
802.1Qcr (ATS)		Same use as CBS on small systems and could provide an advantage of not causing a burst. (very recent and requires theoretical studies)	
802.1Qci (PSPF)		Necessary to protect against errors such as routing, babbling-idiot, etc	
802.1CB (FRER)		To protect against loss of links and communication nodes	
802.1Qat & 802.1Qcc		Seems necessary to configure the resource demands in bridges either statically Qcc or dynamically Qat (SRP) or a hybrid of both	

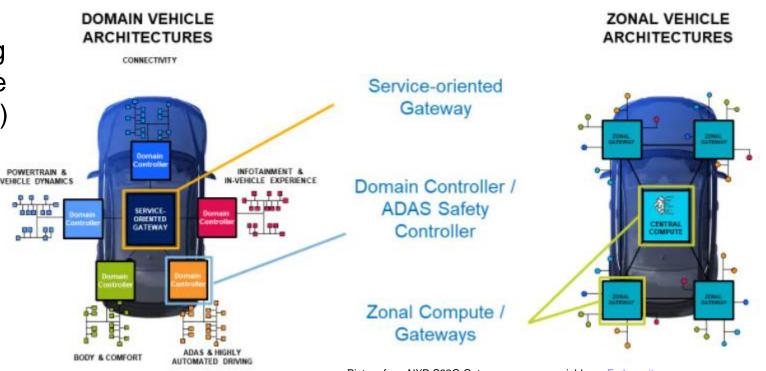
Case studies

Automotive Space Avionics

EDEN Team

© IRT Saint Exupéry • All rights reserved • Proprietary document

Automotive Case Study Ethernet Backbone using TSN


Continental Automotive

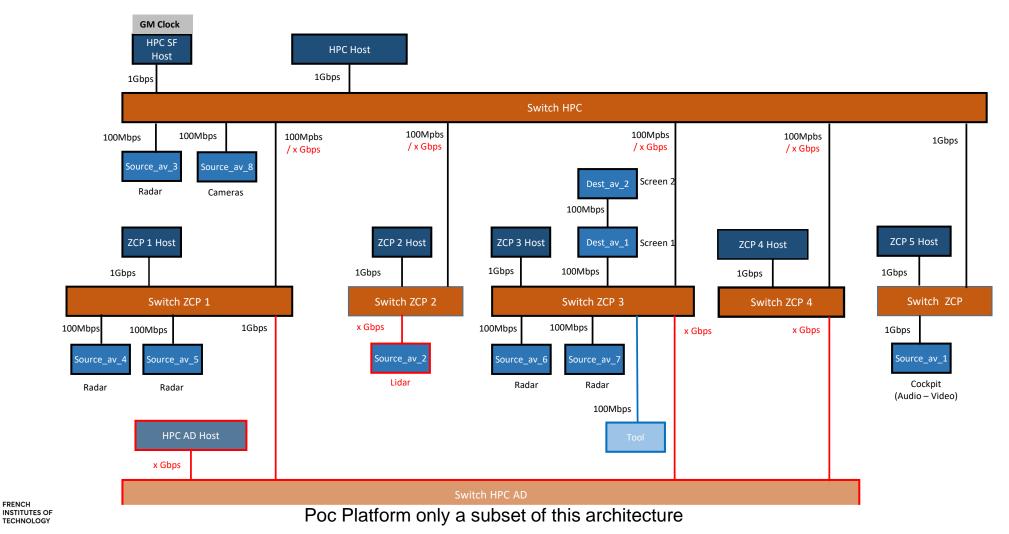
© IRT Saint Exupéry • All rights reserved • Proprietary document

Trend for new Automotive Architecture

- Change of paradigme in Electrical and Electronic Architecture
- High Performance Computing unit (HPC) connected to Zone Control Processing unit (ZCP) via Ethernet Backbone
- Software Centric Approach (SOA concept)
- New sensors (Camera/Lidar) for Autonomous Driving

- Picture from NXP S32G Gateway process avaiable on Forbes site
- Require Ethernet high bandwidth, time determinism and reliability concept

p a g e


2

Case Study for Automotive Architecture

Architecture with variants : AD as an option (red color)

FRENCH

Case Study for Automotive Architecture

- Class Audio Video flows Description (UDP)
 - Class A audio 1.25ms periodic / 1.25 latency (blocks packaged)
 - Radar, Camera and Lidar periodic flow / 10ms and 33ms latency (buffering)
- Flows Description Control Command (UDP)
 - Service Oriented (SomeIP Discovery/Subscription/Registery not yet considered)
 - Event Flow 10ms to 1s worst-case period / 1 to 5ms latency,
 - Periodic Flow, Req/Resp Periodic flow from 5 ms / 1ms latency to 100ms / 10ms latency
 - Legacy (CAN Message to Ethernet Frame of 8 CAN message maximum)
 - Very low latency frame (periodic 2 to 5 ms / 1ms latency)
 - Low latency frame (from 50 ms / 5ms latency to 500 ms / 50ms latency)
 - Flows Description Best Effort (UDP TFTP protocol)
- FRECH INSTITUTES OF INSTITUTES OF INSTITUTES OF INSTITUTES OF
 Diag. (Kbytes) and reprog. file (Mbytes) with transfer > 10Mbps / 200 ms latency

Traffic Shapping Hypothesis

Audio - Video

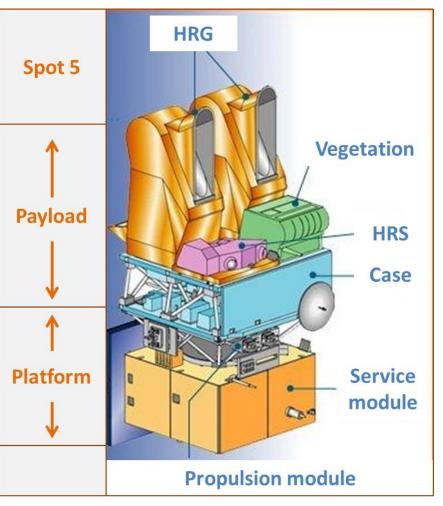
- Redundancy of Radar / Camera / Lidar frame for AD option
- CBS Shaping for buffered Frame (Radar / Camera / Lidar)
- Stereo streams (CBS)

Control - Command

- TAS for very low latency
- Priority (/ ATS) Very low or low latency ?

Best Effort

Priority based for File Transfer



Space Case Study Spacecraft avionics

Spacecraft System

• Payload - High Performance Domain

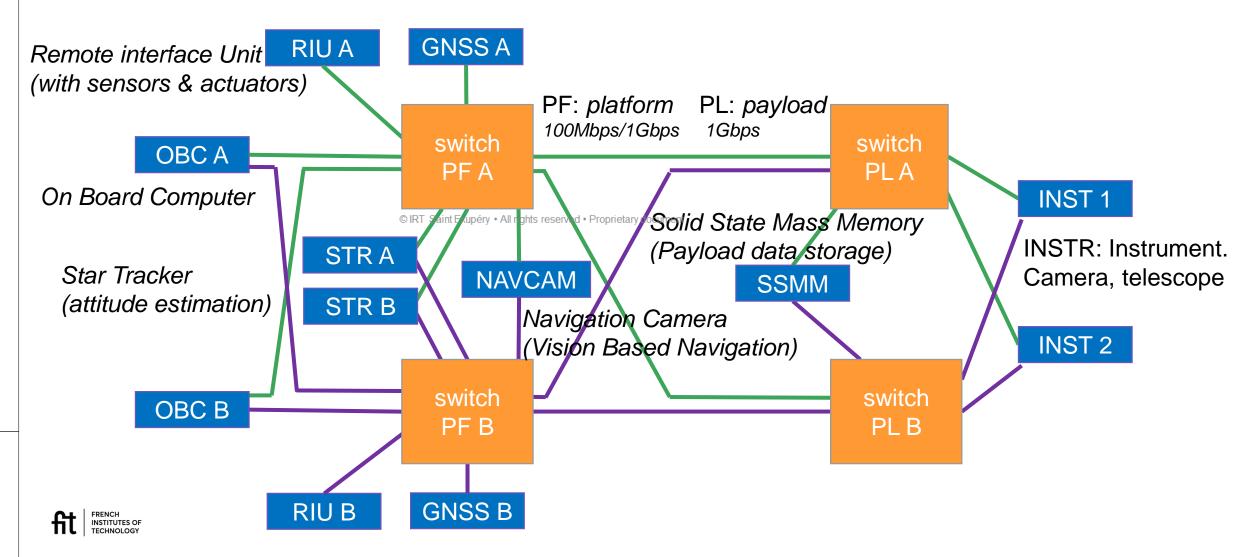
- Repeaters/Transponders,
 Optical Payloads and image processing
- \Rightarrow high data rates / soft real time

Platform - Time Critical Domain

• Attitude Control, Power Supply, Monitoring and Control of Payload, Telecommunication with ground

\Rightarrow low data rates / hard real time

	Platform	Payload
MIL-STD-1553 1 Mbps	Command and Control Time synchronisation	Command and Control Time synchronisation
Spacewire 100 Mbps	Data transfer	Data transfer
Dedicated high bw datalink > 1 Gbps	N/A	Data transfer
dedicate discrete wire 1Hz, 8Hz	synchronization	synchronization


Transition to a unified network with TSN.

May 26th, 2021

Proposed Topology

Time Synchronization Proposal

Command requests (CMD-REQ) (AOCS accurate low jitter): high frequency (8Hz), low jitter (1 µs), time window

AQUI (AOCS acquisition): high frequency (8Hz), bounded jitter (500 µs), time window

DATA (acquisition list): bounded delay between messages delivery

MEO: min delay between messages delivery (5ms)

HK + FDIR (Cyclic acquisition, RW management): deadline to the delivery (end of 8Hz or 1Hz cycle or AOCS acquisitions deadline)

VBN: high data rate, deadline to the message delivery (30Hz)

Instrument: very high data rate

fit FRENCH INSTITUTES OF TECHNOLOGY

no best effort with potential message drop identified so far.

Traffic Shapping Hypothesis

Platform Command and control

- Redundancy of all nodes and pathes
- TAS for platform low latency and low jitter (AOCS)
- Static priority for others

Payload

- Static priority
- Urgent asynchronous messages (CBS ? TAS ? ATS ?)

Best Effort

Priority based storage of NAVCAM images in SSMM

Digital Audio Use case for TSN

Airbus Commercial Proposal

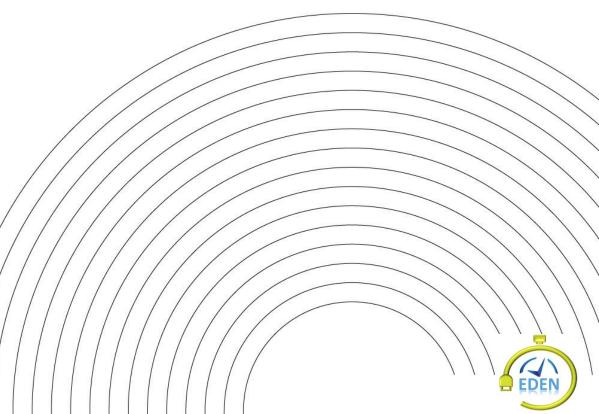
© IRT Saint Exupéry • All rights reserved • Proprietary document

Preliminary

This presentation aims to introduce a specific use case, considered as relevant in AIRBUS Commercial, to be study in EDEN project.

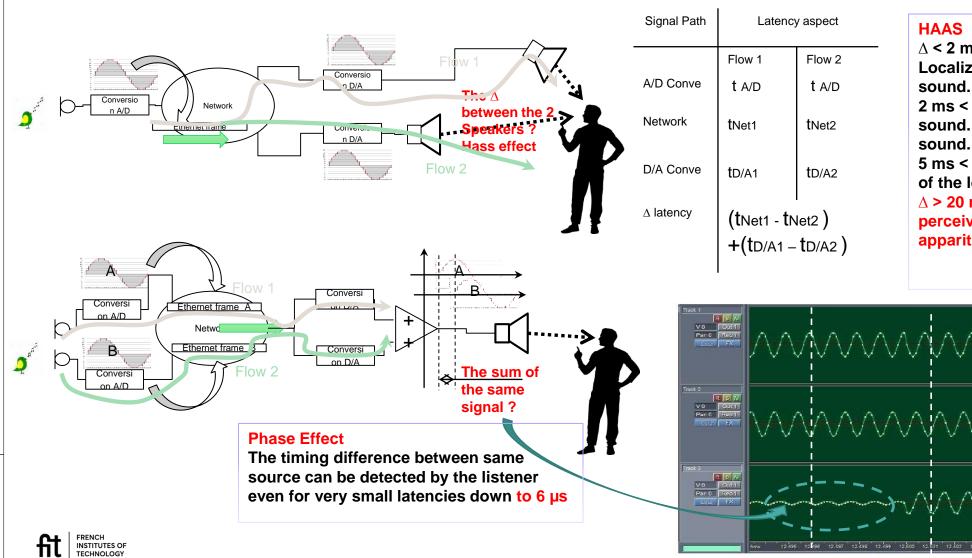
Internally Airbus Commercial, activities are on going on "Audio digitalisation", and it has been identified that some TSN features could be of interest to improve audio services and quality.

The following slides provide information to set up a practical use case, pointing key items to be evaluated against TSN mechanism

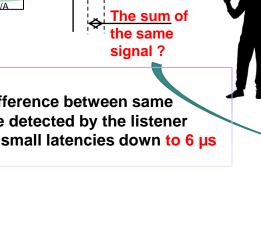


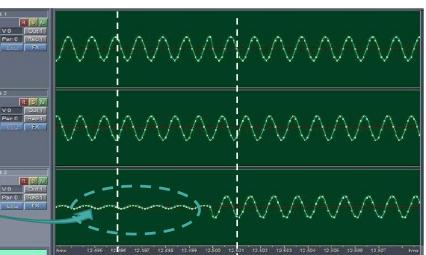
28/09/2021




INSTITUTES OF TECHNOLOGY

Sending audio on a network vs problem of latency and jitter




HAAS EFFECT

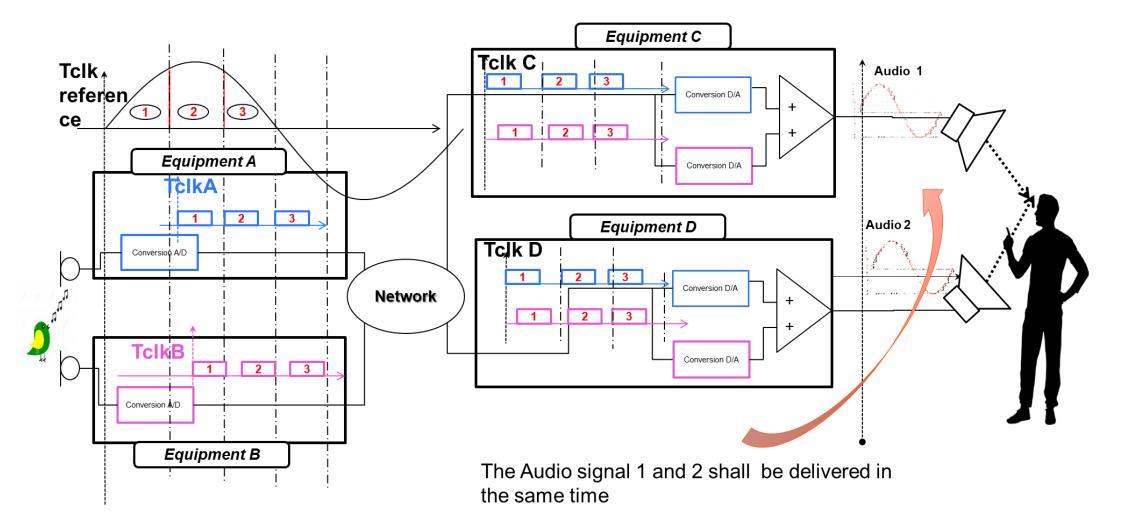
 Δ < 2 ms: Perception of one sound . Localization between the lead and lag

2 ms < Δ < 5 ms Perception of one sound. Localization of the leading

5 ms < \land < 20 ms less discrimination of the location of the lagging sound Δ > 20 ms The second signal is perceived as a separate event apparition of audio phenomena.

р

а


g e

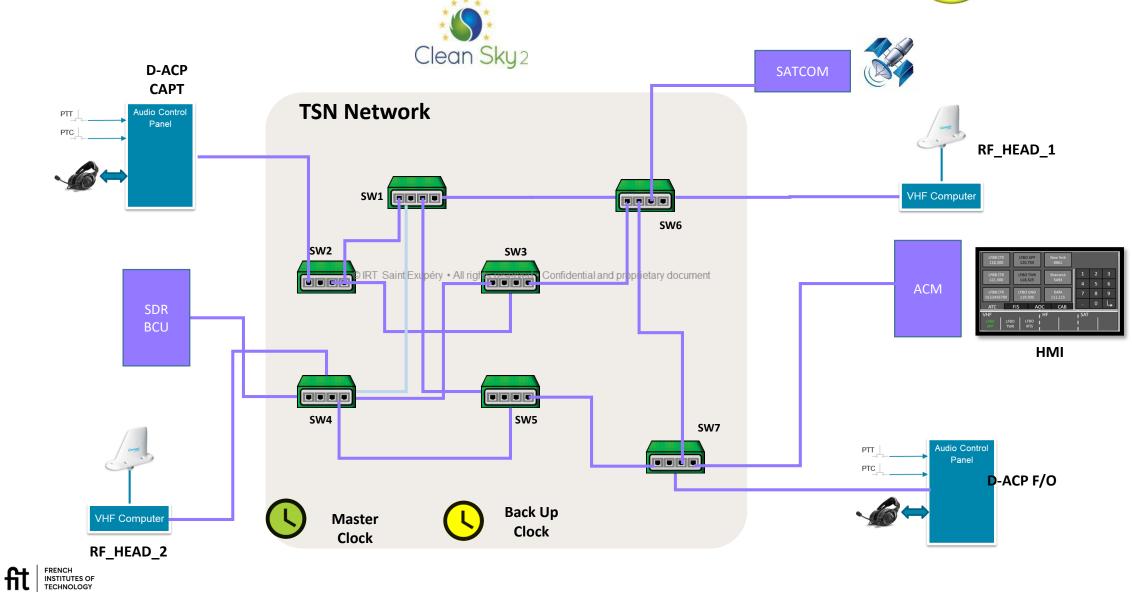
3

7

The solution by the Synchronization (1/2)

р

a g e


3

9

Architecture for digital audio cockpit : (Clean Sky 2 project)

Hypothesis on the network

- All dataflow (audio and command) will be sent in multicast mode
- Data synchronization will be done at applicative level
- RTP protocol will also be used (upper UDP level) as network protocol for audio frames delivery
- Digital ACP samples the voice at 16kHz with 16 bits per samples
- Synchronization between real time publishers and subscribers is required to minimize audio noise due to dropped or added samples and to meet the RTCA DO-214A differential delay requirement. The Audio System shall use PTPv2 as per IEEE 802.1AS
- All data should be timestamped with a precision of 1µs. Time stamp should be gotten prior to send UDP packets. Master clock is the reference time
- Data should be continuously sent. As such, when channel is silent (PTT at 0), Null audio packets will be sent (Payload at 0). It will help to monitor that producer or network are functional. From aircraft network design point of view, not sending nulls would not save any bandwidth in final application because network calculus will have to consider the worst case, i.e. always sending.

Traffic Shapping Hypothesis

<u>Audio</u>

- Redundancy of information
- TAS or CBS Shaping

Command

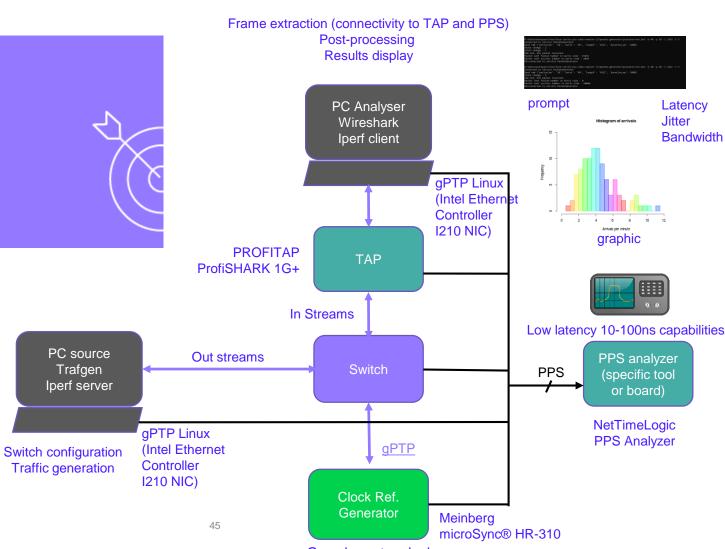
- Redundancy of information
- TAS or CBS Shaping

TOOL FRAMEWORK

EDEN Team

© IRT Saint Exupéry • All rights reserved • Proprietary document

POC Platform for characterization



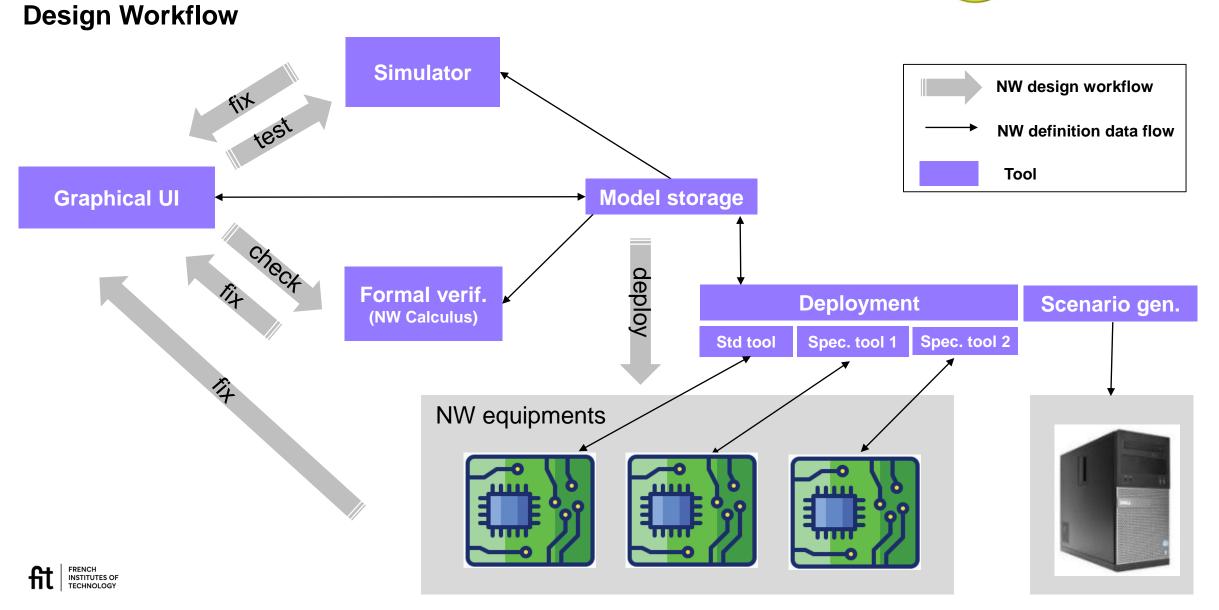
Platform overview

Platform components for synchronization and traffic analysis available

High quality Synch. reference Automated platform Full coverage of TSN services

Validation on one commercial switch SoC

Grand-master clock


FRENCH INSTITUTES OF TECHNOLOGY

Network design

28/09/2021

Network design toolset

Tool overview

Platform for design, and configuration of network

Sysrepo Database Uses YANG Data Model Interface plugins NETFCON Ready

Automated conf. platform Targets full coverage of TSN configuration

Simulation GNSS 🕈 🔜 STR NW calculus NW definition. Storage Sysrepo Additional configuration Deployment NW configuration

Graphical UI

RTaW - Pegase

7 👂 🖉 Grid 5 px 💌 Show... 🔟 💷 📴

SAINT

FYUDÉDY

PERSPECTIVES

EDEN Team

© IRT Saint Exupéry • All rights reserved • Proprietary document

EDEN Project Outcomes

- Define the use of TSN standard for temporal determinism and redundancy (with mixed criticality)
 - Guideline for configuring network service in accordance with safety and availability requirement
- TSN profile standardization proposals
 - Proposal to standardization boby (IEEE and ECSS)
 - Hardware requirement specification for Switch / End-point COTS component
- Toolset for development and certification of Embedded Network Architecture
 - Simulator, TSN configuration generator and formal verification (Network Calculus)
- Electrical and Electronic Architecture Proof of Concept Platform
 - Operational demonstrator and *Platform for network application benchmarking*
 - Ground for others research projects

p a g e

9

Questions

FRENCH INSTITUTES OF TECHNOLOGY

28/09/2021

© IRT Saint Exupéry • All rights reserved • Proprietary document