TSN within NC

Analysing TSN within network calculus framework

Marc Boyer

École d'Été Temps Réel 2021 23 septembre 2021

1/81 TSN within NC Marc Boyer #ETR2021

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

What is TSN?

TSN is not a technology

- TSN is the name of a IEEE task group of the IEEE 802.1 Working Group
 - TSN Time Sensitive Networking
 - http://ieee802.org/1/pages/tsn.html
 - https://l.ieee802.org/
- Documents : Naming : 802.1Q, 802.1ad, and 802.1Qat... From one up to even four letters after 802.1
 - Uppercase : standards
 - Lower-case : amendments
 - -REV : revision (more extensive changes to the existing text than can be undertaken in an amendment)
- Document Access :
 - Working documents : need to be member (≈)
 - Published standard :
 - \approx free after 6 months : "IEEE Standards runs a Get IEEE802 program that allows anyone to download the standards for free, 6 months after publication."
 - Or buy it

TSN promises

Figure – TSN Overview, J. Farkas [3]

2 Recall on Ethernet

- 3 What is added by TSN?
 - A lot of things
 - Flow model
 - Port schedulers
 - Reasonable architectures
 - TSN conclusion

An Ethernet network

Figure - Principle of Ethernet network (switch-based)

- full duplex links
- **propagation delay : signal transmission (**pprox 60% light speed)
- main delay : in switches
- routing, frame format : lack of time

An Ethernet switch

Figure - Common architecture of Ethernet switch

- input ports : frame arrivals
- switching : copy in destination port(s)
- output port : queuing + transmission

An 8 priority level Ethernet switch

Figure - Ethernet switch with priority levels

- non-preemption : up to 1542B blocking
- preemption (802.3br, 802.1Qbu) :
 - partial blocking (up to 148
 B) + overhead
 - single-level preemption

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

TSN within NC What is added by TSN? A lot of things

Outline

2 Recall on Ethernet

What is added by TSN? A lot of things

- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

Main TSN addenda

- Frame preemption (802.3br, 802.1Qbu)
- Synchronisation mechanisms (algorithms, architecture, protocols) 802.1AS-Rev
- Resource reservation, access control, configuration, signalisation, stream identification (802.1Qat, 802.1Qcc, 802.1CBdb, 802.1Qca, 802.1Qdd...)
- Safety and reliability :
 - Input port policing : 802 1Qci
 - Redondancy : 802.1CB
- Output port scheduling :
 - Credit Based Shaper, CBS (802.1Qav)
 - Scheduled Traffic (802.1Qbv)
 - Cyclic Queuing and Forwarding (802 1Qch)
 - Asynchronous Traffic Shaping, ATS (802 1Qcr)
 - ETS for bandwidth sharing (802.1Qaz, pre-TSN)

Outline

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

The token-bucket model

- two parameters :
 - throughput r,
 - burst b (aka capacity, depth)
- the bucket rules
 - the bucket is initially full of b tokens
 - sending a frame of size s consumes s tokens
 - the bucket fills with rate r tokens per time unit
 - \blacksquare can never be negative nor exceed b
- in case of insufficient tokens
 - drop the frame : policing
 - queue until enough : shaping
- property : on any observation interval of duration d, the data amount is less than

$$b + d \cdot r$$

(1)

a periodic flow with frames of size S and period T respects token-bucket b = S, r = S/T

ONERA

Flows contract

- notion of stream
- several "traffic specification"
- the AVB stream traffic specification
 - Traffic Specification associated with a Stream [1, § 35.2.2.8.4 TSpec]
 - MaxFrameSize : the maximum frame size
 - MaxIntervalFrames : the maximum number of frames that the Talker may transmit in one "class measurement interval" (34.4).

ONERA

- Class Measurement Interval (CMI) : static, per class (in 0-7)
- Semantics : tumbling window vs. sliding window TSpec as token-bucket

Input port policing : 802.1Qci

- 802.1Qci : Per-Stream Filtering and Policing PSFP
- done at input port
- associates a token-bucket to a (configurable) set of streams
- drop "out of contract" frames

TSN within NC What is added by TSN? Port schedulers

Outline

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

TSN output port

- Transmission Selection Algorithm :
 - per queue choice
 - one in "none, CBS, ATS, ETS"
- Transmission gate :
 - a gate is either open or closed
 - based on a static cyclic schedule

802.1Qaz : Bandwidth Sharing (SP/WRR, SP/DRR... - pre-TSN)

- Enhanced Transmission Selection for Bandwidth Sharing Between Traffic Classes (aka ETS)
- 802.1Qaz, 2011 (pre-TSN)
- Simple hierarchical scheduling : Static priority + Round-Robin-like
- Introduced for data centers
- Sharing the leftover bandwidth
- Bandwidth Sharing is implementation-defined
 - WRR cited in the standard
 - DRR used in Linux
 - not able to find choice of Cisco, Juniper...

802.1Qav : Credit-Based Shaped (CBS)

- "Forwarding and Queuing Enhancements for Time-Sensitive Stream – FQTSS"
- 802.1Qaz, 2011 (AVB, pre-TSN)
- CBS shaper is optionnal
- Each CBS shaper has a "slope" s parameter (in bit per second)
- A credit increases when the queue waits, and decreases when the queue transmits
- \blacksquare It limits the associated queue to throuput s
- Its shapes/spreads/smoothes the output
- Designed to
 - avoid starvation
 - limit jitter

Example of CBS credit evolution rule

ONERA

802.1Qaz + 802.1Qav : ETS+CBS

21/81 TSN within NC Marc Boyer #ETR2021

802.1Qbv : Time Aware Shaper - TAS

- "Enhancements for Scheduled Traffic"
- A gate is associated to each queue
- The gate is either open or closed
- A global cyclic schedule (Gate Control List - GCL), w.r.t local clock
- Building schedule is out of standard
- "Exclusive gating" \approx one gate opened at a time
- Integration with GCL : update of credit evolution rules
- End-to-end TT schedule requires
 - global build of local schedules
 - synchronisation of local clocks (eg. 802.1AS)

TAS : a Time-Trigerred implementation?

802.1Qch : Cyclic Queuing and Forwarding - CQF

- Not a new "mechanism" : based on 802.1Qci (Filtering) and 802.1Qbv (Time Aware Shaper)
- Divide time into time intervals of common length T
- Frames received in one interval are forwarded in the next one

TSN within NC What is added by TSN? Port schedulers

CQF performances

- Global synchronisation
 - \implies Low jitter (2T)
 - \implies simple delay computation (T \times nb of hops)

TSN within NC What is added by TSN? Port schedulers

CQF configuration

Cycle time must be "large enough" w.r.t. bursts

802.1Qcr : Asynchronous Traffic Shaping – ATS

- Queue waiting create bursts / jitter
- ATS introduces delay to absorb the jitter
 - computes a "Eligibility Time" per frame
 - a local value (no global synchronisation)
 - token-bucket parameters
 - use some share variables between ATS schedulers
 - head of queue can not be selected before this Eligibility Time

ATS : implementation and equivalent model

- Complexity relies in computattion of "Eligibility Time"
- Computed in order to be equivalent to group reshaping (token bucket) with aggregate queuing
- A major theoretical breakthrough
 - reshaping comes for free
 - avoid cyclic dependency problem

TSN within NC What is added by TSN? Reasonable architectures

Outline

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

The most obvious one : TT/Shaper/BE

- TT queues : for very low latency and jitter flows
- CBS TAS queues : for real time
- Best Effort

Principles :

- build TT queue GCL wrt TT behaviour, no shaper for TT queues
- set other GCL queues as the opposite (exclusive gating)
- set BE at lower priority
- configure CBS or ATS wrt expected workload
- $R \ensuremath{\textbf{q}}$: exclusive gating allows TT files to use any priority level.

With alarms and CQF

- TT queues : for very low latency and jitter flows
- Static priority : for asynchronous alarms
- CQF
- CBS|TAS queues : for real time
- Best Effort

TSN within NC What is added by TSN? TSN conclusion

Outline

2 Recall on Ethernet

3 What is added by TSN?

- A lot of things
- Flow model
- Port schedulers
- Reasonable architectures
- TSN conclusion

TSN conclusion

- the next real-time network
- a lot on industry involved
- able to host several kinds of flows
- offering several scheduling policies
- how to configure it?
- how to bound buffer usage and delay?

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid
- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

What is network calculus?

- another theory for real-time (computes response-time bound)
- based on (min,plus) dioid theory
- used to certify AFDX network in A380, A400M, etc.
- several tools (e.g. RTaW-PEGASE)
- share common aspects with Event Stream theory [6]

Why not using scheduling analysis?

because :

- diversity of approaches is beneficial
- input models are different
 - shaping, serialization
- worst end-to-end delay is not the sum of local worst delays

Notations

- \blacksquare $\mathbb R$: the set of real numbers, $\mathbb R^+$ the subset of non-negative real numbers,
- $\blacksquare \mathbb{Z}$ the set of integers,
- $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}$ the ceiling function ($\lceil 1.2 \rceil = 2, \lceil 4 \rceil = 4, \lceil -1.2 \rceil = -1$)
- $\bullet \ a \wedge b = \min(a, b)$

$$\forall x \in \mathbb{R}, [x]^+ = \max(x, 0)$$

• $\forall f: \mathbb{R}^+ \to \mathbb{R}$, its non-decreasing non-negative closure is defined by

$$[f]^{+}_{\uparrow}(t) = \max_{0 \le s \le t} [f(s)]^{+}.$$
 (2)

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid
- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

Modeling data flows

Definition : Cumulative curve

$$\mathcal{F} = ig\{f: \mathbb{R}^+ o \mathcal{R}ig\} \; \mathcal{C} \subset \mathcal{F} \; ext{is the subset}$$

- non-negative
- non-decreasing
- piece-wise continuous
- left-continuous
- \blacksquare An element $A \in \mathcal{C}$ is used to model a data flow in the network
- A is called "cumulative curve"
- A(t) represent the amount of data the amount of data from a flow observed at some point up to time t
- A lot of information lost

Modeling server

Definition : Serveur

A server is a relation $S \subseteq C \times C$, $= \text{ left-total } (\forall A \in C, \exists D \in C : (A, D) \in S)$ $= \forall (A, D) \in S : A \ge D$ $= A \xrightarrow{S} D \equiv (A, D) \in S$

Semantics

- A(t) : amount of data arrived into S up to t
- D(t) : amount of data departed from S up to t
- Departure after arrival $\implies D \leq A$
- No loss, no creation, compression, etc.

Measures : delay and backlog

Definition : Delay et backlog

Let \boldsymbol{S} a server. Define

$$d(A, D, t) = \inf \left\{ d \in \mathbb{R}^+ \mid A(t) \le D(t+d) \right\},\tag{3}$$

$$l(A, D) = \sup_{t \ge 0} d(A, D, t),$$
(4)

$$b(A, D, t) = A(t) - D(t),$$
 (5)

$$b(A, D) = \sup_{t \ge 0} b(A, D, t).$$
 (6)

Semantics

- b(A, D) : amount of memory (buffers) required to store data
- d(A, D) : delay, assuming FIFO service

TSN within NC └─System modeling

Performance contract of flow

Definition : Arrival curve

A cumulative curve $A\in \mathcal{C}$ admits $\alpha\in \mathcal{F}$ as arrival curve if

$$\forall t, d \in \mathbb{R}^+ : A(t+d) - A(t) \le \alpha(d) \tag{7}$$

$$\mathcal{C}(\alpha) = \left\{ A \in \mathcal{C} \mid \forall t, d \in \mathbb{R}^+ : A(t+d) - A(t) \le \alpha(d) \right\}$$
(8)

A few properties

Theorem : Arrival curve properties

Let $A \in \mathcal{C}, \alpha, \alpha' \in \mathcal{F}$.

• if α and α' are arrival curves for A, then also is $\alpha \wedge \alpha'$

$$\mathcal{C}(\alpha) \cap \mathcal{C}(\alpha) = \mathcal{C}(\alpha \wedge \alpha') \tag{9}$$

- one can always assume that $\alpha(0)=0$
- if α is an arrival curve for A, and $\alpha' \geq \alpha$, then α' is an arrival curve for A

$$\alpha \le \alpha' \implies \mathcal{C}(\alpha) \subseteq \mathcal{C}(\alpha') \tag{10}$$

- proofs are obvious
- properties are of practical importance (cf. class)

Performance contract of server

Definition : Backlogged period

Let S a server, $(A, D) \in S$. An interval $I \subset \mathbb{R}^+$ is a backlogged period if

$$\forall t \in I : A(t) > D(t)$$

Definition : minimal strict service

A serveur S offers a strict service of function $\beta \in \mathcal{C}$ if

 $\forall t, d \in \mathbb{R}^+ \text{ t.q. } [t, t+d[\text{ backlogged period } D(t+d) - D(t) \ge \beta(d).$ (12)

This is denoted $S \in \mathcal{S}_{\mathsf{strict}}(\beta)$.

What are these curves about?

What are these curves about?

48/81 TSN within NC Marc Boyer #ETR2021

What are these curves about?

49/81 TSN within NC Marc Boyer #ETR2021

From contract to performances bounds

Theorem : Performance bounds (first version)

Let S a server, $\alpha, \beta \in \mathcal{F}$, $(A, D) \in S$. If $A \in \mathcal{A}(\alpha)$, $S \in \mathcal{S}_{\mathsf{strict}}(\beta)$, then

$$d(A,D) \le d(\alpha,\beta),\tag{13}$$

$$b(A,D) \le b(\alpha,\beta).$$
 (14)

. Moreover, D admits as arrival curve $\alpha' : d \mapsto \alpha(d + d(\alpha, \beta))$.

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid
- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

Definition : Dioid

```
A dioide is a tuple \langle \mathcal{D}, \oplus, \otimes, \tilde{0}, \tilde{1} \rangle with \forall a, b, c \in \mathcal{D}
```

```
D is a set.
```

```
\blacksquare \oplus and \otimes are two internal operators,
```

```
\blacksquare operator \oplus is
```

- **associative** $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
- commutative $a \oplus b = b \oplus a$
- idempotent : $a \oplus a = a$
- with neutral element $ilde{0}$: $a \oplus ilde{0} = a$

```
\blacksquare operator \otimes is
```

- **associative** $(a \otimes b) \otimes c = a \otimes (b \otimes c) = a \otimes b \otimes c$
- distributive over \oplus : $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ and $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$
- neutral element $\tilde{1}: a \otimes \tilde{1} = \tilde{1} \otimes a = a$, subsorbing element $\tilde{0}: a \otimes \tilde{0} = \tilde{0} \otimes a = \tilde{0}$

Why dioids?

a lot of interesting propertieswill simplify proofs

More details and properties

- commutative, complete dioid
- residuation
- • •
- out of scope of this presentation

The min-plus dioid

The min-plus dioid

Let \wedge as $a \wedge b = \min(a, b)$, then $\langle \mathbb{R} \cup \{-\infty\}, \wedge, +, \infty, 0 \rangle$ is a dioid.

But this is not the one of interest.

The min-based convolution

Definition : Convolution

Let
$$f,g \in \mathcal{F}$$
, and define $f * g \in \mathcal{F}$ as $\forall t \in \mathbb{R}^+$

$$(f * g)(t) = \inf_{0 \le s \le t} (f(t - s) + g(s))$$

= $\inf_{u,s \ge 0, \ u+s=t} (f(u) + g(s))$

Properties $\forall f, g, h \in \mathcal{F}$

• associative :
$$(f * g) * h = f * (g * h)$$

 $\bullet \ \textit{distributivity over} \land : f \ast (g \land h) = (f \ast g) \land (f \ast h)$

• if
$$f(0) = g(0) = 0$$
, then $f * g \leq f \wedge g$

Convolution illustration

ONERA

The min-based dioid of functions

Definition : Min-based dioid of functions

 $(\mathcal{F}, \wedge, *, \infty, \delta_0)$ is a (commutative complete) dioid $\bullet \delta_0 : 0 \mapsto 0 ; t > 0 \mapsto +\infty$

Deconvolution

Definition : Deconvolution

Let $f,g\in \mathcal{F}$ and define $f\oslash g$ as

$$\forall t \in \mathbb{R}^+ \quad (f \oslash g)(t) = \sup_{u \ge 0} \{ f(t+u) - g(u) \}$$

Theorem : Link between deconvolution and residuation

$$f \oslash g = \inf \left\{ h \in \mathcal{F} \mid h \ast g \ge f \right\}$$
(15)

A lot of properties

$\forall f,g,h\in\mathcal{F}$

- $\blacksquare h \ast g \geq f \Leftrightarrow h \geq f \oslash g$
- $f \ge g \Rightarrow f \oslash h \ge g \oslash h$
- $f \ge g \Rightarrow h \oslash f \le h \oslash g$
- $\ \ \, (f\wedge g)\oslash h\leq (f\oslash h)\wedge (g\oslash h).$
- $\bullet \ f \oslash (g \ast h) = (f \oslash h) \oslash g$
- $\bullet \ (f \oslash h) \oslash g = (f \oslash g) \oslash h$
- $\bullet \ (f*g) \oslash h \le f*(g \oslash h)$

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid

7 Reformulating network calculus with dioid

- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

Min-based definitions

Definition : Arrival curve

A cumulative curve $A\in \mathcal{C}$ admits $\alpha\in \mathcal{F}$ as arrival curve if

$$A \le A * \alpha \tag{16}$$

$$\mathcal{A}(\alpha) = \{ A \in \mathcal{C} \mid A \le A * \alpha \}$$
(17)

Definition : minimal min-plus service

A serveur S offers a minimal min-plus service of function $\beta \in \mathcal{C}$ if

$$D \ge A * \beta \tag{18}$$

This is denoted $S \in \mathcal{S}_{mp}(\beta)$.

The min-based definition generalizes the strict one.

$$S_{\text{strict}}(\beta) \subset S_{\text{mp}}(\beta)$$
 (19)

ONER

Interest of min-based definitions I

Theorem : Arrival curve, min-based properties

Let $A \in \mathcal{C}, \alpha, \alpha' \in \mathcal{F}$. If α and α' are arrival curves for A, then also is $\alpha * \alpha'$.

$$\mathcal{C}(\alpha) \cap \mathcal{C}(\alpha) = \mathcal{C}(\alpha * \alpha') \tag{20}$$

Exercise :

- $\alpha(d) = 2 \left\lceil \frac{d}{4} \right\rceil$: arrival curve for periodic flow sending two frames of size 1 every 4 time unit
- $\alpha'(d) = \begin{bmatrix} \frac{d}{1} \end{bmatrix}$: maximal link capacity, one frame per time unit
- compare $\alpha \wedge \alpha'$ and $\alpha * \alpha'$

Interest of min-based definitions II

Theorem : Performance bounds (second version)

Let S a server, $\alpha, \beta \in \mathcal{F}$, $(A, D) \in S$. If $A \in \mathcal{A}(\alpha)$, $S \in \mathcal{S}_{mp}(\beta)$, then

0

$$d(A,D) \le d(\alpha,\beta),$$
 $b(A,D) \le b(\alpha,\beta).$ (21)

. Moreover, D admits as arrival curve

$$\alpha' = \alpha \oslash \beta \tag{22}$$

Exercise :

- α : arrival curve for periodic flow
- $\blacksquare \beta$: constant rate
- compare $\alpha': t \mapsto \alpha(t + d(\alpha, \beta) \text{ and } \alpha \oslash \beta$

Interest of min-based definitions III

Theorem : Pay burst only once

Let S,S' two servers. Then, the sequence $S \circ S'$ is also a server

$$S \circ S' = \{ (A, D) \in \mathcal{C}^2 \mid \exists X, (A, X) \in S, (X, D) \in S' \}$$
(23)

Moreover, if S, S' offers respectively a min-plus service of curve β , β' , then S; S' offers a min-plus service of curve $\beta * \beta'$.

$$S \in \mathcal{S}_{\mathsf{mp}}(\beta), S' \in \mathcal{S}_{\mathsf{mp}}(\beta') \implies S; S' \in \mathcal{S}_{\mathsf{mp}}(\beta * \beta')$$
(24)

Exercise :

- α : arrival curve for periodic flow
- β_1, β_2 : constant rate
- compare $hDev(\alpha, \beta_1 * \beta_2)$ and $hDev(\alpha, \beta_1) + hDev(\alpha \oslash \beta_1, \beta_2)$

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid

8 Aggregate scheduling

9 Residual service for TSN

10 Conclusion

Aggregate flow

Definition : Aggregate flow

Let $A_1, A_2 \in \mathcal{C}$, then $A_1 + A_2 \in \mathcal{C}$ is called cumulative curve of the aggregate flow.

Simple but useful ...

MIMO server I

Definition : MIMO Server

A Multiple-Input Multiple-Output of dimension n server (aka $n\text{-}\mathsf{MIMO})$ is $S\subseteq \mathcal{C}^n\times\mathcal{C}^n$ such that

$$(A_1, \dots, A_n) \xrightarrow{S} (D_1, \dots, D_n) \implies \forall i : A_i \ge D_i.$$
 (25)

The associated aggregate server S_{\sum} is defined

$$\sum_{i=1}^{n} A_i \xrightarrow{S_{\Sigma}} \sum_{i=1}^{n} D_i$$
(26)

and for any $i \in [1, n]$, the residual/leftover server S_i is

$$A_i \xrightarrow{S_i} D_i. \tag{27}$$

MIMO server II

Computing a residual/leftover service curve

Individual service depends on

- the aggregate capacity
- the scheduling policy
- the competing arrival curves
- specific parameters (frame sizes, preemption cost, etc.)

Outline

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid
- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

Recall on TSN scheduling

- static priority (SP)
- bandwidth-sharing (ETS)
- credit-based shaper (CBS)
- asynchronous traffic shaping (ATS)
- time-triggered gates (TAS)

Static priority residual service

Theorem : Static priority residual service

Let S be a n-MIMO server, with aggregate strict service curve β ($S_{\Sigma} \in S_{\text{strict}}(\beta)$) using non-preemptive static priority scheduling. If each input flow A_i admits arrival curve α_i and maximal frame size L_i^{\max} , then each residual server S_i offers the min-plus minimal service

$$\beta_i = \left[\beta - \sum_{j=1}^{j < i} \alpha_j - \max_{j > i} L_j^{\max}\right]_{\uparrow}^+.$$
 (28)

Bandwith-sharing (ETS)

Theorem : DRR residual service

Let S be a n-MIMO server offering an aggregate strict service curve β with DRR service policy. If each flow i has a maximum packet size L_i^{\max} and a quantum Q_i , then flow i is guaranteed the strict service curve β_i^{DRR} defined by

$$\beta_i^{DRR}(t) = \left[\frac{Q_i}{F}\beta(t) - \frac{Q_i(L - L_i^{\max}) + (F - Q_i)(Q_i + L_i^{\max})}{F}\right]^+$$

with $F = \sum_{i=1}^{n} Q_i$, $L = \sum_{i=1}^{n} L_i^{\max}$.

Other schedulers overview, [5]

Source	Mechanism	Author	Year	Pre- emption	Work Basis	Impact of CDT	Arrival α	Min. Service β	Max. Service β^{max}	Shaper	Max. Output α^*	Delay	Backlog
[31]	CBS	R. Queck	July 2012	-	[48]	no	leaky-bucket	min. 2 CBS & x SP			CBS & SP	CBS & SP	
[27]	CBS	J. A. Ruiz De Azua et al.	Oct. 2014	-	[31]	no	detailed	min. & strict for 2 CBS & strict for SP	2 CBS	2 CBS			
[49]	CBS	Lin Zhao et al.	Nov. 2018		[27]	no	detailed	min. 3 CBS					
[41]	TAS	Luxi Zhao et al.	July 2018	no	[29] [42]		leaky-bucket	min. TT			TT	TT	
[50]	TAS-CBS	F. He et al.	May 2017	no	[27]	yes	leaky-bucket			2 CBS	CBS incl. shaper		
[29]	TAS-CBS	Luxi Zhao et al.	April 2018	yes&no	[27]	yes	leaky-bucket	min. 2 CBS			CBS	CBS	
[26]	TAS-CBS	H. Daigmorte et al.	June 2018	yes&no	[29] [27]	yes	detailed	min. & strict for x CBS		x CBS			
[28]	TAS-CBS	Luxi Zhao et al.	Dec. 2018	no	[26] [29] [27]	yes	leaky-bucket	min. x CBS		x CBS & link	CBS incl. shaper	CBS	
[37] & [35]	ATS-CBS	E. Mohammad- pour et al.	Sep. 2018	-	[27]	yes	=\alpha^*	min. 2 CBS / min. x CBS [32]			CBS incl. link	CBS	CBS

TABLE I. A short overview of existing NC work. All mechanisms are listed.

What about FIFO?

What about FIFO?

- easy to implement
- easy to analyze per node
- hard to analyze end-to-end

4 What is network calculus?

- 5 System modeling
- 6 The min-plus dioid
- 7 Reformulating network calculus with dioid
- 8 Aggregate scheduling
- 9 Residual service for TSN

10 Conclusion

■ TSN is a revolution

77/81 TSN within NC Marc Boyer #ETR2021

- TSN is a revolution
- but not all revolutions keep all promises

- TSN is a revolution
- but not all revolutions keep all promises
- Networks calculus is a mature analysis method

- TSN is a revolution
- but not all revolutions keep all promises
- Networks calculus is a mature analysis method
- adapted to TSN

- TSN is a revolution
- but not all revolutions keep all promises
- Networks calculus is a mature analysis method
- adapted to TSN
- presenting both in 90' is challenging

Bibliography I

- Virtual Bridged Local Area Networks Amendment 14 : Stream Reservation Protocol (SRP). Technical Report IEEE 802.1Qat, IEEE, 2010.
- [2] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. *Deterministic Network Calculus - From theory to practical implementation*. Number ISBN: 978-1-119-56341-9. Wiley, 2018.
- [3] János Farkos.
 - Standards from ieee, ietf, 3gpp, and beyond –. Proc. of the TSN/A Conference 2019.
- [4] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus, volume 2050 of LNCS. Springer Verlag, 2001.

Bibliography II

- [5] Lisa Maile, Kai-Steffen Hielscher, and Reinhard German. Network calculus results for tsn : An introduction. In Proc. of the Information Communication Technologies Conference (ICTC 2020), pages 131–140. IEEE, 2020.
- [6] Jonas Rox and Rolf Ernst.

Compositional performance analysis with improved analysis techniques for obtaining viable end-to-end latencies in distributed embedded systems. *International Journal on Software Tools for Technology Transfer*, 15(3):171–187, 2013.

