
Formal verification of real-time systems

Frédéric Herbreteau (fh@labri.fr)

Bordeaux INP / LaBRI

École Temps-Réel 2021 - Poitiers
September 21, 2021

1/44

fh@labri.fr

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

2/44

System verification

System Specification
?

Standard solution: apply select test cases to the system

I Non-exhaustive: only a few select situations can be tested

I Hard to reproduce: in particular for real-time systems

I Late bug discovery: tests discover bugs in the system

3/44

System verification

System Specification
?

Tests

Standard solution: apply select test cases to the system

I Non-exhaustive: only a few select situations can be tested

I Hard to reproduce: in particular for real-time systems

I Late bug discovery: tests discover bugs in the system

3/44

Formal verification (model-checking)

System Specification
?

Tests

Model Formal
Specification

Formal
Verification

Automatic
Test

Generation

Automatic
Code

Generation

I Formal models are built early in development cycle

I Model-checking: ensures automatically and exhaustively
that all behaviors conform to the specification

I Recommended for critical systems (e.g. ISO26262)

4/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

5/44

Timed automata [AD94]

Real-time system: correctness depends on delays

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Run: finite sequence of transitions

x
y

s0

0

0

s0

0.4

0.4

s2

0.4

0

s2

0.7

0.3

s0

0

0.3

s1

0.7

1

0.4 b 0.3 d 0.7, a

〈q, v〉 δ,a−−→ 〈q′, v ′〉 if ∃ q a,g ,R−−−→ q′ s.t. v + δ |= g and v ′ = [R](v + δ).

6/44

Timed automata [AD94]

Real-time system: correctness depends on delays

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Run: finite sequence of transitions

x
y

s0

0

0

s0

0.4

0.4

s2

0.4

0

s2

0.7

0.3

s0

0

0.3

s1

0.7

1

0.4 b 0.3 d 0.7, a

〈q, v〉 δ,a−−→ 〈q′, v ′〉 if ∃ q a,g ,R−−−→ q′ s.t. v + δ |= g and v ′ = [R](v + δ).

6/44

Example #1: the CSMA/CD protocol (1/2)

(source: https://dokteron.blogspot.com/2014/03/csmacd-csmaca.html)

Property to check: detection of collisions (based on delays)

7/44

https://dokteron.blogspot.com/2014/03/csmacd-csmaca.html

Example #1: the CSMA/CD protocol (2/2)

Bus Station
(for λ = 808 and σ = 26)

Detection failure:

Reachability of a state with collision and wait1 or wait2?

8/44

Example #2: scheduling jobs (1/2)

Jobs compete to execute tasks on machines

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3)

Property to check: can the jobs be scheduled within 7s?

J2

J1

t
7

J2

J1

t
7

9/44

Example #2: scheduling jobs (2/2)

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3) within 7s.

acq(m1)

x := 0

rel(m1)

(x = 2)

acq(m2)

x := 0

rel(m2)

(x = 1)

acq(m3)

x := 0

rel(m3)

(x = 3)

acq(m1)

x := 0

rel(m1)

(x = 1)

acq(m3)

x := 0

rel(m3)

(x = 3)

acq(m): await m free, then set m busy

rel(m): set m free

10/44

Example #2: scheduling jobs (2/2)

J1 : (m1, 2) (m2, 1) (m3, 3) J2 : (m1, 1) (m3, 3) within 7s.

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 1)

y := 0

(y = 3)
(t ≤ 7)

Schedulability:

Reachability of the green state?

10/44

State reachability in timed automata

Specification: reachability of a state

Reachability problem:

INPUT: a timed automaton A and a state s

QUESTION: is there a run in A that ends in s?

x
y

s0

0

0

s0

0.4

0.4

s2

0.4

0

s2

0.7

0.3

s0

0

0.3

s1

0.7

1

0.4 b 0.3 d 0.7, a

Theorem ([AD94, CY92])

The reachability problem is PSpace-complete

11/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

12/44

The uncountable state-space

(s0, 0, 0)

? s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

Uncountable state-space due to density of time

13/44

The uncountable state-space

(s0, 0, 0)

?

0.0, b
0.31, b

0.99, b

.
(s2, 0.31, 0)

0.0, d
0.1, d

0.78, d

.
s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

Uncountable state-space due to density of time

13/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2b

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2b

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2 s0b d

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2 s0b d

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2 s0 s1b d

b

a

14/44

Symbolic semantics: zone graph (1/2)

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0 s2 s0 s1

. . .
b d

b

a c

14/44

Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]

15/44

Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]

15/44

Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]

15/44

Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]

15/44

Symbolic semantics: zone graph (2/2)

Zone graph [DT98]:

I Zone: set of valuations defined by simple constraints
(x − y ≤ 1 & y < 2)

I Initial node: 〈q0,Z0〉 with Z0 = {v0 + δ | δ ∈ R≥0}

s0 〈s0, 0 ≤ x = y〉

I Edge: 〈q,Z 〉 a−→ 〈q′,Z ′〉 if there is a transition q
a,g ,R−−−→ q′ s.t.

Z ′ = {v ′ | ∃v ∈ Z .∃δ ∈ R≥0. v + δ |= g and v ′ = [R](v + δ)}
and Z ′ 6= ∅.

s0 s2

b
〈s0, 0 ≤ x = y〉 b−→ 〈s2, 0 ≤ x − y < 1 & 0 ≤ y〉

Theorem ([DT98])

The zone graph is sound and complete for reachability.

Efficient representation: Difference Bound Matrices [BM83, Dil89]
15/44

The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)

16/44

The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0 s0

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)

16/44

The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0 s0 s0

. . .

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)

16/44

The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0 s0 s0

. . .

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)

16/44

The zone graph may be infinite: abstraction! (1/2)

s0

x, y := 0

(y = 1), y := 0

s0 s0 s0

. . .

However, the exact value of x , y is irrelevant once bigger than 1

s0 s0 s0

(x − y = 2 & y ≥ 0) can safely be abstracted as (x > 1 & y ≥ 0)

16/44

The zone graph may be infinite: abstraction! (2/2)

Abstraction operator a defined on the DBM representation of
zones

Abstract zone graph:

I Initial node: 〈q0, a(Z0)〉 where Z0 is the initial zone

I Edge: 〈q,Z 〉 a−→a 〈q′, a(Z′)〉 if Z = a(Z) and
〈q,Z 〉 a−→ 〈q′,Z ′〉 in the zone graph

Theorem ([DT98, BBLP06])

There exists abstractions a s.t. the abstract zone graph is finite,
sound and complete for finite reachability.

The set of behaviors of a timed automaton can be represented as a
finite graph

17/44

The zone graph may be infinite: abstraction! (2/2)

Abstraction operator a defined on the DBM representation of
zones

Abstract zone graph:

I Initial node: 〈q0, a(Z0)〉 where Z0 is the initial zone

I Edge: 〈q,Z 〉 a−→a 〈q′, a(Z′)〉 if Z = a(Z) and
〈q,Z 〉 a−→ 〈q′,Z ′〉 in the zone graph

Theorem ([DT98, BBLP06])

There exists abstractions a s.t. the abstract zone graph is finite,
sound and complete for finite reachability.

The set of behaviors of a timed automaton can be represented as a
finite graph

17/44

Example of finite abstract zone graph

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0

s0, (0<=x & 0<=y & 0<=x-y)

s2, (0<=x & 0<=y)

b

s0, (0<=x & 0<=y & -1<x-y)

s1, (0<x & 0<=y)

a

b

c

d

18/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

19/44

Reachability algorithm

Search the finite abstract zone graph for an accepting state

1 INPUT: A timed automaton A
2 RETURN: true iff A has a reachable accepting state
3

4 W := {〈s0, a(Z0)〉} ; P := W
5 whi le (W 6= ∅)
6 pick and remove a node 〈s,Z 〉 from W
7 i f (s is accepting)
8 return true
9 f o r each 〈s,Z 〉 →a 〈s ′,Z ′〉 do

10 i f 〈s ′,Z ′〉 6∈ P
11 add 〈s ′,Z ′〉 to P and W
12 end
13 end
14 return false

20/44

Implementation with TChecker

1 boo l r e a c h (t c h e c k e r : : zg : : z g t & zg)
2 {
3 s t d : : s t a c k<t c h e c k e r : : zg : : s t a t e s p t r t > w a i t i n g ;
4 s t d : : u n o r d e r e d s e t<t c h e c k e r : : zg : : s t a t e s p t r t , s t a t e s p t r h a s h t ,
5 s t a t e s p t r e q u a l t > p a s s e d ;
6 s t d : : v e c t o r<t c h e c k e r : : zg : : z g t : : s s t t> v ;
7
8 zg . i n i t i a l (v , t c h e c k e r : : STATE OK) ;
9 f o r (auto && [s t a t u s , s , t] : v) {

10 w a i t i n g . push (s) ;
11 p a s s e d . i n s e r t (s) ;
12 }
13 v . c l e a r () ;
14
15 w h i l e (! w a i t i n g . empty ()) {
16 t c h e c k e r : : zg : : c o n s t s t a t e s p t r t s{w a i t i n g . top ()} ;
17 w a i t i n g . pop () ;
18
19 i f (zg . s a t i s f i e s (s , l a b e l s)) // a c c e p t i n g ?
20 r e t u r n t r u e ;
21
22 zg . n e x t (s , v , t c h e c k e r : : STATE OK) ;
23 f o r (auto && [s t a t u s , n e x t s , t] : v) {
24 i f (p a s s e d . f i n d (n e x t s) == p a s s e d . end ()) {
25 w a i t i n g . push (n e x t s) ;
26 p a s s e d . i n s e r t (n e x t s) ;
27 }
28 }
29 v . c l e a r () ;
30 }
31
32 r e t u r n f a l s e ;
33 }

21/44

Some examples

CSMA/CD ”Unreachability of a state with collision and
wait1/wait2?”

√

Scheduling ”Unreachability of the green state?” ×

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 1)

y := 0

(y = 3)
(t ≤ 7)

22/44

Some examples

CSMA/CD ”Unreachability of a state with collision and
wait1/wait2?”

√

Scheduling ”Unreachability of the green state?” ×

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

x := 0 (x = 2) x := 0 (x = 1)

x := 0 (x = 2) x := 0 (x = 1) x := 0 (x = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 3)

y := 0

(y = 1)

y := 0

(y = 1)

y := 0

(y = 3)
(t ≤ 7)

22/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

23/44

Liveness properties

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Infinite run: infinite sequence of transitions

x
y

s0

0

0

s2

0.4

0

s0

0

0.3

s1

0.7

1

s2

0.7

0

. . .
0.4, b 0.3, d 0.7, a 0, c 0.4, d

Liveness: visit an accepting state infinitely often

Theorem ([DT98, Li09])

The (abstract) zone graph is sound and complete for liveness.

24/44

Liveness properties

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Infinite run: infinite sequence of transitions

x
y

s0

0

0

s2

0.4

0

s0

0

0.3

s1

0.7

1

s2

0.7

0

. . .
0.4, b 0.3, d 0.7, a 0, c 0.4, d

Liveness: visit an accepting state infinitely often

Theorem ([DT98, Li09])

The (abstract) zone graph is sound and complete for liveness.

24/44

Liveness properties

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Infinite run: infinite sequence of transitions

x
y

s0

0

0

s2

0.4

0

s0

0

0.3

s1

0.7

1

s2

0.7

0

. . .
0.4, b 0.3, d 0.7, a 0, c 0.4, d

Liveness: visit an accepting state infinitely often

Theorem ([DT98, Li09])

The (abstract) zone graph is sound and complete for liveness.

24/44

Liveness properties

s0

s1

s2

a, (x < 1& y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d , (y < 1), x := 0

Infinite run: infinite sequence of transitions

x
y

s0

0

0

s2

0.4

0

s0

0

0.3

s1

0.7

1

s2

0.7

0

. . .
0.4, b 0.3, d 0.7, a 0, c 0.4, d

Liveness: visit an accepting state infinitely often

Theorem ([DT98, Li09])

The (abstract) zone graph is sound and complete for liveness.

24/44

Example #1: CSMA/CD (1/2)

Bus Station

Few collisions don’t prevent communication: is there a run
with finitely many collisions and infinitely many
communications?

25/44

Example #1: CSMA/CD (2/2)

Few collisions don’t prevent communication: is there a run
with finitely many collisions and infinitely many
communications?

s0 s1 s2

begini
busyi
endi
cd

cd

begini
busyi
endi

cd

begini
busyi
endi
cd

I Product of the CSMA/CD model and the property
automaton

I The property above holds if the state s1 is visited infinitely
often on a run in the product

26/44

Liveness checking algorithm

Liveness problem:

INPUT: a timed automaton A and a state s

QUESTION: is there a run in A that visits s infinitely often?

Theorem ([AD94, CY92])

The liveness problem is PSpace-complete

Algorithm: find an accepting cycle in the abstract zone graph

s0 s1

s2

sn

.

I nested depth-first
search

I decomposition into
strongly connected
components

27/44

Liveness checking algorithm

Liveness problem:

INPUT: a timed automaton A and a state s

QUESTION: is there a run in A that visits s infinitely often?

Theorem ([AD94, CY92])

The liveness problem is PSpace-complete

Algorithm: find an accepting cycle in the abstract zone graph

s0 s1

s2

sn

.

I nested depth-first
search

I decomposition into
strongly connected
components

27/44

Example #1: fixing the CSMA/CD model

Bus Station

Few collisions don’t prevent communication: run with finitely
many collisions and infinitely many communications? ×

28/44

Example #1: fixing the CSMA/CD model

Bus Station

Few collisions don’t prevent communication: run with finitely
many collisions and infinitely many communications?

√

28/44

Summary on verification

I Formal verification has sound mathematical foundations

I Specification = Safety (unreachability) + Liveness

I Abstract zone graph is finite, sound and complete for
verification (both safety and liveness)

I Standard graph algorithms can be used to verify timed
automata

But many optimisations (coarse abstractions, etc) are required to
apply model-checking to actual examples

29/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

30/44

Subsumption optimization for reachability checking

(s0, Z0)

(s1, Z1)

(s1, Z
′
1)

Z ′
1 ⊆ Z1

Don’t explore (s1,Z
′
1): all its

runs are possible from (s1,Z1)

Recall: zones are sets of
valuations

31/44

Subsumption graphs and reachability

Zone graph ZG

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

Subsumption
graph 1

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

Subsumption
graph 2

(1, x>=0)

(2, x>=1) (2, x>1)

(1, x>=1) (1, x>1)

I trace inclusion when 〈q,Z 〉 ⊆ 〈q,Z ′〉, i.e. Z ⊆ Z ′

I Standard reachability algorithm: state-space traversal with:
I Skip 〈q,Z 〉 if covered by some visited node 〈q,Z ′〉
I Only keep maximal nodes

I The three graphs above certify unreachability of

32/44

Reachability algorithm with subsumption

1 INPUT: A timed automaton A
2 RETURN: true iff A has a reachable accepting state
3

4 W := {〈s0, a(Z0)〉} ; P := W
5 whi le (W 6= ∅)
6 pick and remove a node 〈s,Z 〉 from W
7 i f (s is accepting)
8 return true
9 f o r each 〈s,Z 〉 →a 〈s ′,Z ′〉 do

10 i f ∀ 〈s ′,Z ′′〉 ∈ P we have Z ′ 6⊆ Z ′′

11 remove all nodes 〈s ′,Z ′′〉 with Z ′′ ⊆ Z ′ from P and W
12 add 〈s ′,Z ′〉 to P and W
13 end
14 end
15 end
16 return false

In practice: crucial optimisation to scale formal verification to
models of significant size

33/44

Subsumption graphs and liveness

Zone graph ZG
√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

Subsumption
graph 1

√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

Subsumption
graph 2 ×

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

e

I A subsumption graph with no accepting cycle is a liveness
certificate

I Not all subsumptions graphs are liveness certificates

34/44

Subsumption graphs and liveness

Zone graph ZG
√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

Subsumption
graph 1

√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

Subsumption
graph 2 ×

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

e

I A subsumption graph with no accepting cycle is a liveness
certificate

I Not all subsumptions graphs are liveness certificates

34/44

Subsumption creates unsound accepting cycles

(s0, Z0)

(s1, Z1)

(s1, Z
′
1)

Z ′
1 ⊆ Z1

Without subsumption: no accepting cycle

With subsumption: spurious accepting cycle, as we claim
that 〈s1,Z

′
1〉 can do the orange path

35/44

Subsumption creates unsound accepting cycles

(s0, Z0)

(s1, Z1)

(s1, Z
′
1)

Z ′
1 ⊆ Z1

Without subsumption: no accepting cycle

With subsumption: spurious accepting cycle, as we claim
that 〈s1,Z

′
1〉 can do the orange path

35/44

Liveness compatible subsumption graphs

Zone graph ZG
√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

Subsumption
graph 1

√

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

Subsumption
graph 2 ×

1, x>=0

2, x>1 2, x>0

1, x>1 1, x>0

3, x>=0

1, x>2

a b

c c
a, b b

a

d
d

e

a
c

e

I A subsumption graph is liveness compatible if it has no cycle
with both and 99K

I Two main algorithms for computing liveness compatible
subsumption graphs: nested-DFS [LOD+13] and
SCC-decomposition based refinement
algorithm [HSTW16, HSTW20].

36/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes

Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes

Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption

safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Iterative refinement algorithm [HSTW16, HSTW20]

safe nodes
Subsumption graphLevel 1

Level 2

Small nodes

Restricted subsumption
safe nodes

Level K

...

safe nodes
Continue till

no bad cycles remain

37/44

Liveness with subsumption is hard

Inputs Reachability Liveness
A PSpace-complete PSpace-complete

A,ZG (A) O(|ZG (A)|) O(|ZG (A)|)
A,SubZG (A) O(|SubZG (A)|) PSpace-complete

The iterative refinement algorithm visits each node of ZG (A) at
most 3 times

Experiments on standard benchmarks: SubZG (A) is often
enough to check liveness

38/44

Liveness with subsumption is hard

Inputs Reachability Liveness
A PSpace-complete PSpace-complete

A,ZG (A) O(|ZG (A)|) O(|ZG (A)|)
A,SubZG (A) O(|SubZG (A)|) PSpace-complete

The iterative refinement algorithm visits each node of ZG (A) at
most 3 times

Experiments on standard benchmarks: SubZG (A) is often
enough to check liveness

38/44

Outline

The goal of formal verification

Modeling real-time systems with timed automata

Solving the reachability problem

Reachability algorithm

Checking Liveness properties

Subsumption optimization

Conclusion

39/44

Beyond this talk (non exhaustive)

I Timed automata model-checkers: UPPAAL
(https://uppaal.org/), PAT (https://pat.comp.nus.edu.sg/), . . .

I Effective: case studies, e.g. Web service transaction
protocol [RSV10], Aerial video tracking system [PRH+16]

I Timed games & control: see Ocan’s talk (UPPAAL TiGa)

I Quantitative analysis: weighted timed automata (UPPAAL
CORA), probabilistic timed automata (PRISM
http://www.prismmodelchecker.org/), . . .

I Robustness & parametric analysis: SYMROB
(https://github.com/osankur/symrob), Imitator
(https://www.imitator.fr/)

I More expressive models: stopwatches, hybrid systems
PHAVer lite
(https://www.cs.unipr.it/~zaffanella/PPLite/PHAVerLite), time Petri
nets: Romeo (http://romeo.rts-software.org/), Tina
(http://projects.laas.fr/tina/)

40/44

https://uppaal.org/
https://pat.comp.nus.edu.sg/
http://www.prismmodelchecker.org/
https://github.com/osankur/symrob
https://www.imitator.fr/
https://www.cs.unipr.it/~zaffanella/PPLite/PHAVerLite
http://romeo.rts-software.org/
http://projects.laas.fr/tina/

Timed automata verification in Bordeaux

I Complexity of timed automata verification and efficient
verification algorithms

I Current challenge: verification of concurrent real-time
systems

I Open-source implementation: the TChecker tool
(https://github.com/ticktac-project/tchecker)

I Looking for collaborations!

41/44

https://github.com/ticktac-project/tchecker

References I

R. Alur and D.L. Dill.

A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek.

Lower and upper bounds in zone-based abstractions of timed automata.
Int. Journal on Software Tools for Technology Transfer, 8(3):204–215, 2006.

Bernard Berthomieu and Miguel Menasche.

An enumerative approach for analyzing time petri nets.
In IFIP Congress, pages 41–46, 1983.

C. Courcoubetis and M. Yannakakis.

Minimum and maximum delay problems in real-time systems.
Form. Methods Syst. Des., 1(4):385–415, 1992.

D. Dill.

Timing assumptions and verification of finite-state concurrent systems.
In AVMFSS, volume 407 of LNCS, pages 197–212. Springer, 1989.

C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions.
In TACAS’98, volume 1384 of LNCS, pages 313–329. Springer, 1998.

Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz.

Why liveness for timed automata is hard, and what we can do about it.
In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016, December 13-15,
2016, Chennai, India, volume 65 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

42/44

References II

Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz.

Why liveness for timed automata is hard, and what we can do about it.
ACM Trans. Comput. Log., 21(3):17:1–17:28, 2020.

Guangyuan Li.

Checking timed büchi automata emptiness using lu-abstractions.
In Joël Ouaknine, editor, Formal modeling and analysis of timed systems. 7th Int. Conf. (FORMATS),
volume 5813 of Lecture Notes in Computer Science, pages 228–242. Springer, 2009.

Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand Larsen, and Jaco

van de Pol.
Multi-core emptiness checking of timed büchi automata using inclusion abstraction.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture
Notes in Computer Science, pages 968–983. Springer, 2013.

Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat, Olivier H. Roux, Didier Lime, and Étienne

André.
Applying parametric model-checking techniques for reusing real-time critical systems.
In Cyrille Artho and Peter Csaba Ölveczky, editors, Formal Techniques for Safety-Critical Systems - 5th
International Workshop, FTSCS 2016, Tokyo, Japan, November 14, 2016, Revised Selected Papers, volume
694 of Communications in Computer and Information Science, pages 129–144, 2016.

Anders P. Ravn, Jiŕı Srba, and Muhammad Saleem Vighio.

A formal analysis of the web services atomic transaction protocol with UPPAAL.
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification,
and Validation - 4th International Symposium on Leveraging Applications, ISoLA 2010, Heraklion, Crete,
Greece, October 18-21, 2010, Proceedings, Part I, volume 6415 of Lecture Notes in Computer Science,
pages 579–593. Springer, 2010.

43/44

Regions

s0

s1

s2

a, (x < 1 & y = 1)

b, (x < 1), y := 0

c, (x < 1), y := 0

d, (y < 1), x := 0
x

y

0 1

1

The region abstraction above is a bisimulation relation for all
timed automata with constants at most 1.

44/44

	The goal of formal verification
	Modeling real-time systems with timed automata
	Solving the reachability problem
	Reachability algorithm
	Checking Liveness properties
	Subsumption optimization
	Conclusion
	Appendix

